Chemical Processing of a Land-Lake Breeze Effect: Study of Non-methane Hydrocarbons in Chicago

Anna Beck
Mentor: Paul Doskey
Global Change Education Program (GCEP) Summer 2003
Argonne National Laboratory (ANL)
Environmental Research Division

Outline

- Non-methane hydrocarbons (NMHCs)
 - Define
 - Role in air pollution
- Area of Study: Chicago
 - Land-Lake breeze
 - Hypothesis
- NMHC air samples
 - Collection methods
 - Analysis
- Preliminary Results
 - Conclusions
- Future Work
- Acknowledgements

NMHCs

- Non-methane hydrocarbons
- C₂-C₁₂ chains
- Single, double, and triple bonds
- Aromatics
- Examples:

2-methylpentane isoprene propane toluene

NMHCs: Importance in Ambient Air Relating to NO_x and Ozone

• NO₂ is broken down to NO by radiation from the sun. One way ozone forms is from the collision of atomic oxygen and molecular oxygen, releasing energy to a third body, M. Ozone is consumed when NO is oxidized back into NO₂. This is a natural sink for O₃.

$$NO_2 + hv \rightarrow NO + O$$

$$O + O_2 + M \rightarrow O_3 + M$$

$$O_3 + NO \rightarrow NO_2 + O_2$$

NMHCs are oxidized by hydroxy radicals (·OH) which form various peroxy radicals. These peroxy radicals oxidize NO to NO₂ without destroying ozone, i.e. O₃ accumulates. O₃ is a pollutant in the troposphere and a major factor in smog.

NMHC +
$$\cdot$$
OH \rightarrow RO₂ + HO₂
RO₂ + NO \rightarrow NO₂ + O₂ + \cdot OH
HO₂

Example: ethene
$$C_2H_4 + \cdot OH + 2O_2 \rightarrow HOCH_2CH_2O_2 \cdot \\ HOCH_2CH_2O_2 \cdot + NO \rightarrow NO_2 + \cdot OH + O_2 + RO + OHRO$$

Area Site: Loyola University in Chicago

Land-Lake (Sea) Breeze

- Land heats more quickly than water
- Warm air mass moves out and cools over water
- Creates a thermal flow
- Daytime effect, peaks midday

Source: Michael J. Pidwirny, Ph.D., Dept of Geography, Okanagan University College, 2000. http://www.geog.ouc.bc.ca/physgeog/contents/7o.html

Hypothesis

The edge of a land-lake breeze returning to land creates an acute, high concentration of chemically processed pollutants.

NMHC Air Samples

- Collection Site
 - Loyola UniversityChicago Air MonitoringStation (LUCAS)
 - Elevation: 60 m
 - 21 sampling days in 2002; July 16-August 16
 - 11 sampling days in 2003; July 15-29

NMHC Measurements

- Collection:
 - automated 10 canister sampler
- Frequency:
 - 5 minute samples collected every hour from 0700 to 1000 LT
 - 12 minute samples collected continuously from 1100 to 1300 LT

NMHC Measurements

Analysis:

 At ANL by cryogenic pre-concentration/high-resolution gas chromatography with flame ionization detection

Preliminary Results

- 2 land-lake breeze days in summer 2002 during sampling period: July 30th and August 9th
- Analyzed chromatograms and calculated concentrations and reaction rates for 5 days in 2002
 - July 29th, 30th, 31st, and August 8th and 9th; August 10th data not available

Mixing Ratios: Early Morning and Mid-Day

OH Reaction Rates: Early Morning and Mid-Day

OH Reaction Rates: Early Morning and Mid-Day

Mixing Ratio by the Hour

Mixing Ratio by the Hour

Hours

Ratio to Acetylene

Future Work

- Analyze data from summer 2003 land-lake breeze days
- Continue to collect samples at LUCAS during the summers
- Collect and analyze air samples from east side of lake while still sampling at LUCAS

Acknowledgements

- Paul Doskey, GCEP mentor
- William Modey
- GCEP, ANL, and Department of Energy
- Loyola University, Chicago: Professor Martina Schmeling and student research groups

Prof. Schmeling (center) and summer 2003 students